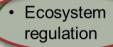


Laura Wendling


VTT Technical Research Centre of Finland Representing Urban Nature Labs (UNaLab)

NBS & URBAN ECOSYSTEM SERVICES

Horizon 2020 European Union funding for Research & Innovation

- Biodiversity
- · Regeneration of derelict areas & brownfield sites
- Ecosystem disservices

Integrated

governance

& monitoring

duration

City budget

· Long-term viability of activity/projects

Transfer of actions

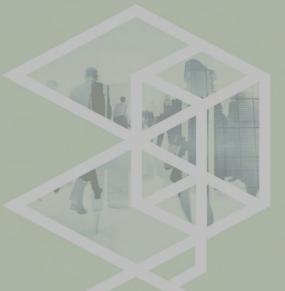
Integrated environmental performance Health and

well-being

- Physical & mental health
- Access
- Impact on quality of life, happiness & employment

Indicators of NBS effectiveness

Transferability and monitoring


Citizen's involvement

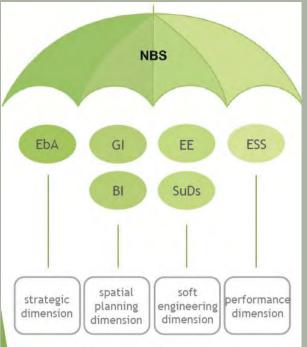

- · Involvement in implementation projects
- · Ownership & responsibility
- Sharing & adopting NBS in community

Image reproduced from Kabisch et al. 2016, Ecology and Society 21(2):39

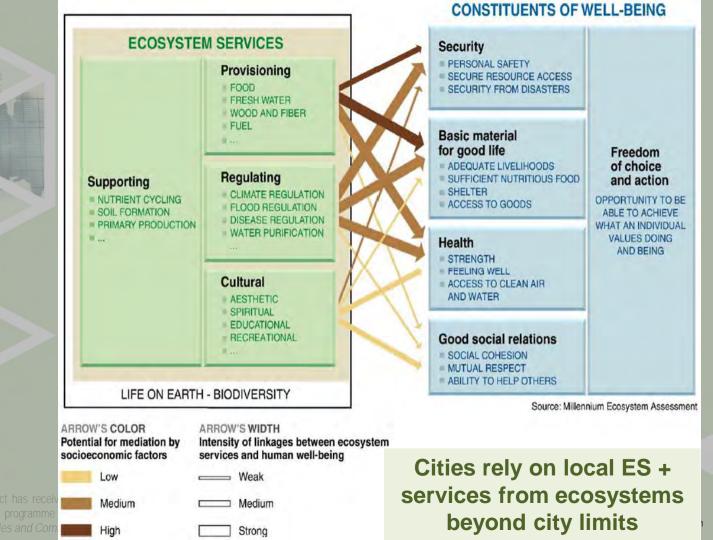
NBS as a concept

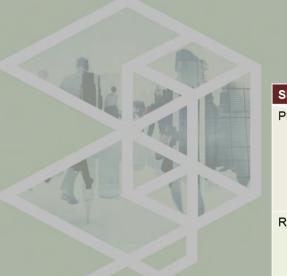
EbA → Ecosystem-based adaptation

GI → Green infrastructure

Bl → Blue infrastructure

EE → Ecological engineering

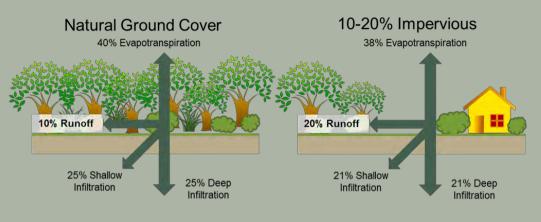

SuDs → Sustainable urban drainage systems


ESS → Ecosystem services

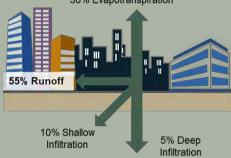
- Provide solutions to climate change related challenges: more/less rain, (storm)water quality/quantity, biodiversity, well-being
- Multifunctional infrastructure: water management + recreation + biodiversity
- Replace/complement grey infrastructure + food production
- **Mimic nature**: biofilter, green roof/wall etc.

Ecosystem service providing unit = NBS?

SECTION	CLASS	SERVICE UNIT	DEMAND
PROVISIONING	Cultivated crops	Fields, orchards, gardens	ards, gardens Consumption
	Surface water for drinking	Watershed	
	Groundwater for drinking		
	Surface water / non-drinking use		
	Groundwater / non-drinking use		
REGULATING	Air filtration/pollutant sequestration	Trees, shrubs	Risk of exposure to pollutants
	Reduced GHG concentration	Vegetation, soil	Risk of climate change
	Micro/regional climate regulation	Vegetation, water bodies	
	Smell/noise/visual impact buffer	Vegetation	Risk of exposure to noise etc.
	Hydrologic cycle maintenance	Vegetated & permeable surfaces	Risk of flood
	Flood control	Wetlands	Exposure to flooding
CULTURAL	Physical use of landscape/waterscape	Green and blue spaces	Potential & direct use
	Scientific/educational		
	Heritage, cultural		


BY&FORCITIZENS
European Conference on Sman
Sustainable and Resilient Cities

Exemplar water-related ES from Maes et el. 2016


30-50% Impervious

35% Evapotranspiration

75-100% Impervious

30% Evapotranspiration

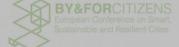
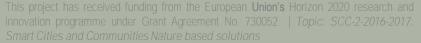
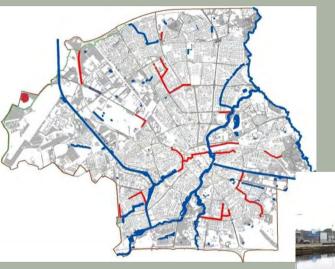


Image adapted from US EPA 1993, Pub. #840-B-92-002

NBS in Practice: Genova

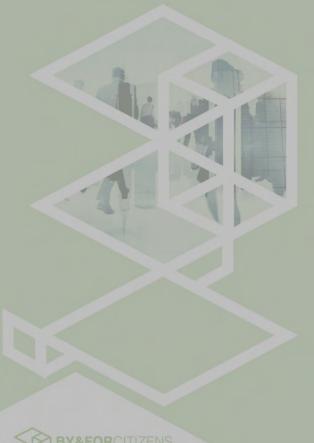

Brownfield regeneration at Gavoglio Barracks

 Multifunctional green space with recreational areas, community gardens & orchards, stormwater ponds, forested areas, playgrounds, green wall(s)



NBS in Practice: Eindhoven Watercourse reconstruction, green roofs/walls & increased vegetation

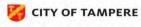
NBS in Practice: Tampere


Vuores stormwater management system

 Multifunctional green space with stormwater ponds, surface & subsurface water filtration (wetlands, biofilters)

Quantifying ES provision by NBS

- Most policy goals now 'structure oriented' rather than 'supply oriented'
- ...but ecosystem services (provided by NBS) may be specifically targeted in policy
- Evidence for NBS (co-)benefits facilitates systemic approach to ecosystem services provision in cities
- NBS implementation should involve explicit consideration of ecosystem services (supply oriented) as well as form (structure oriented)

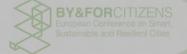


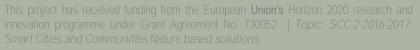
INNAHUB
An initiative by Tune

LULEÅ UNIVERSITY

OF TECHNOLOGY

Universität Stuttgart





THANK YOU!

www.unalab.eu

Horizon 2020
European Union funding
for Research & Innovation