Plants in the City: Wetlands

Wetlands are areas of land that, due to their position in the landscape, are periodically or continuously wet throughout the year. They form in response to wet conditions and serve to control water flows, as well as to improve or maintain water quality. Critical ecosystem services provided by wetlands include:

- Protection and improvement of water quality
- Regulation of water flows storage of floodwaters and maintenance of water flow during dry periods
- Provision of habitat for fish and wildlife

Wetlands also provide recreational and educational opportunities for people of all ages. The ecological importance of wetlands, as well as their aesthetic and recreational appeal, highlight the need for wetland conservation, restoration and construction. In the last 300 years, 87% of the world's wetlands have been lost to land degradation with 54% of wetland loss occurring since 1900¹.

Water Quality Protection and Improvement

Wetlands filter incoming water and can capture and store or transform many environmental pollutants, making wetland function in the landscape similar to that of kidneys in the human body. The processes via which wetlands remove pollutants vary depending on the specific wetland type or design and the pollutant(s) being removed. Several different physical, chemical and biological processes may be at work simultaneously to remove pollutants from waters entering wetlands, such as:

Pollutant	Removal mechanism			
	Physical	Chemical	Biological	
Carbonaceous Organic Matter (BOD [†])	Sedimentation		Microbial degradation (aerobic and anaerobic)	
Nitrogen	Adsorption	Nitrification Denitrification Ammonia volatilisation	Plant uptake Microbial uptake	
Phosphorus	Adsorption Filtration Sedimentation	Precipitation	Plant uptake Microbial uptake	
Pathogens	Sedimentation Filtration	UV radiation	Natural die-off Excretion of antibiotics from macrophytes roots Predation	
Heavy Metals	Sedimentation Adsorption	Precipitation	Plant uptake Microbial uptake	
Organic Contaminants	Adsorption Sedimentation	Volatilisation Photolysis	Plant uptake Microbial degradation	

¹ Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2018. The IPBES assessment report on land degradation and restoration. Montanarella, L., Scholes, R., and Brainich, A. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 744 pages. https://www.ipbes.net/assessment-reports/ldr

		Hydrolysis	
Suspended Solids	Sedimentation		
	Filtration		

[†] BOD = biochemical oxygen demand, a measure of how much oxygen is needed by microbes to break down organic matter

Constructed wetlands are specifically designed to suit local environmental conditions as well as the type and quality of the water to be treated. Constructed wetlands can range from small, single-house installations for runoff filtration, to larger wetlands for treatment of domestic or industrial wastewaters from whole communities, or even very large-scale wetland systems that act as filters for entire catchments. Constructed wetlands are most commonly used to treat the following types of water:

- Municipal wastewater, for example polishing of treated sewage effluent;
- Landfill leachate including removal of metals, organic compounds and nitrogen;
- Industrial wastewater, such as removal of metals and nutrients from metallurgic wastewater and removal of nutrients and organics from tannery wastewater;
- Mine drainage, for example neutralisation of acidic drainage and/or removal of metals;
- Agricultural runoff;
- Agricultural wastewater such as swine, dairy, livestock, and winery wastewaters;
- Stormwater runoff; and,
- Polluted surface water in rivers and lakes.

Regulation of Water Flows

Wetlands, whether natural or constructed, act as a hydrological buffer by slowing the flow of water as it moves across the landscape. By capturing, storing and slowly releasing rainfall and snowmelt, wetlands reduce flooding, flood hazards and the associated costs, and reduce soil erosion. Wetlands also help to maintain base flows during dry periods.

The water flow regulation function of wetlands may become increasingly important in the future as climate change intensifies the global water cycle and demand for freshwater increases to support the world's growing population. Periodic flooding frequently coincides with over-exploitation of available freshwater resources and water scarcity due to temporal misalignment between water supply and demand. Flood and drought events are expected to increase both in frequency and in severity in the future. Parts of Eastern Europe and Scandinavia are among those considered subject to the greatest flood risk. At the same time, meteorological and hydrological droughts are expected to increase in frequency, duration and severity across most of Europe, but particularly in South-Eastern Europe².

Their role in the natural ecosystem as regulators of water flows means that conserving, restoring or constructing wetlands contributes to reducing disaster rick. From 1980-2016, EEA member countries experienced total economic

² EEA 2017. Climate change, impacts and vulnerability in Europe 2016. Report No 1/2017.

losses of \in 410 billion attributed to climate-related extremes, with more than one-third of losses due to flood and drought³. The predicted increase in heavy precipitation events will yield an estimated five-fold increase in mean annual economic losses due to flooding across Europe, increasing from an average cost of \in 4.6 billion (2000-2012) to approximately \in 23.5 billion by 2050⁴.

Provision of Habitat + Recreational Opportunities

Wetlands can contribute a great deal to biodiversity enhancement by providing essential habitat for many species of plants, fish, mammals, birds, amphibians, reptiles, invertebrates and other wildlife. Hundreds of different species of plants and animals depend on wetlands for their survival, with many using wetlands as nurseries for their young. A variety of factors can influence the diversity of wildlife and benefit of wetlands on the surrounding environment, such as wetland size, water level control, variation in water depth across the wetland, the diversity of wetland plants and the length of edges between plant zones.

Wildlife Habitat Considerations		
Design flexibility to control water levels	Water level control is the principal tool available to control pant growth and water quality in treatment wetlands	
Incorporation of deep-water zones without creating hydraulic short circuits	Deep water zones serve multiple purposes including improved hydraulic mixing, increased hydraulic residence time, a sump for solids storage, and perennial habitat for fish and ducks	
Utilization of a diversity of plant species	Polyculture will provide greater reliance to pests and operational upsets	
Utilization of plant species with known benefit to wildlife species	Each plant species has benefits to different wildlife species/groups	
Incorporation of vertical structure by planting herbaceous, shrub, and tree strata	Structural diversity equates to habitat variety for feeding, roosting, and nesting wildlife	
Incorporation of horizontal structure by use of littoral shelves and benches, as well as deep zones	Plant diversity is promoted by varying water regimes that correspond to specific plant preferences	
Inclusion of structural density by use of irregular shorelines	Irregular shorelines and "fingers" provide visual cover and greater ecotone (edge) length	
Inclusion of islands in open water areas	Islands provide a refuge for birds and reptiles in wetlands where predation is a potential problem	
Installation of dead snags and nesting platforms	Nesting habitat is frequently limiting in newly constructed wetlands	

³ EEA 2018. National climate change vulnerability and risk assessments in Europe, 2018. Report No 1/2018.

⁴ Jongman et al. 2014. Nature Climate Change 4:264-8.

The species richness typical of wetlands contributes to their recreational and aesthetic appeal. One of the more critical aspects of wetland conservation, restoration or construction is determining the optimal level of accessibility that supports a high level of ecosystem service provision as well as strongly supporting recreational and educational opportunities. Co-creating wetland conservation, restoration or construction plans with stakeholders can help to ensure that the factors of greatest significance to the local population are considered when designing constructed wetlands to be beneficial for both wildlife and recreational use. Examples of considerations include:

Recreational & Educational Use Considerations				
Provision of parking and safe access to	People will find wetlands appealing if they have access			
wetlands	and feel safe			
Provision of boardwalks and observation	Boardwalks provide opportunity for people to get closer to			
points	the wetland environment without damaging the environment			
Incorporation of interpretive displays	Interpretive displays provide opportunity for the public to			
	learn more about the structure and function of wetlands			
Stakeholder co-creation	Stakeholders will provide helpful suggestions for wetland			
	design and ongoing improvements that increase the site's			
Collection of public comment and	recreational / amenity value			
incorporation in design/operation				
modifications				
Stakeholder co-implementation	Working together to create a recreational space enhances			
·	stakeholders' sense ownership and contributes to			
	community building			
Provision of blinds for wildlife study	Observing wildlife without disturbing it will optimise both			
	habitat and public uses			
Establishment of accessible monitoring points	Treatment wetlands provide excellent classrooms for			
	environmental study			
Provision of monitoring records for public	Providing water quantity and quality information, along			
	with information about species richness and diversity,			
	provides evidence of the value of wetlands			